The table below shows how long a printer took to print pages for each of the 5 recent print jobs.
$$ \begin{array} {|c|c|c|}
\hline
\text{Job} & \text{Number of } & \text{Total printing time} \\
\text{number} & \text{pages printed} & \text{(seconds)} \\ \hline
1 & 35 & 20 \\ \hline
2 & 482 & 325 \\ \hline
3 & 1{,}950 & 1{,}320 \\ \hline
4 & 10 & 5 \\ \hline
5 & 633 & 450 \\ \hline
\end{array}
$$
At the rate that job number 3 was completed, how long would a print job of 500 pages take to complete?
Use the appropriate information from the table to set up a proportion.
$$ \begin{array} {|c|c|c|}
\hline
\text{Job} & \text{Number of } & \text{Total printing time} \\
\text{number} & \text{pages printed} & \text{(seconds)} \\ \hline
1 & 35 & 20 \\ \hline
2 & 482 & 325 \\ \hline
3 & \colorbox{aqua}{$1{,}950$} & \colorbox{aqua}{$1{,}320$} \\ \hline
4 & 10 & 5 \\ \hline
5 & 633 & 450 \\ \hline
\end{array}
$$
$$ \frac{1{,}950 \text{ pages}}{1{,}320 \text{ seconds}} = \frac{500 \text{ pages}}{x \text{ seconds}} $$
$$ 1{,}950\cdot x=500\cdot 1{,}320 $$
$$ x \approx 338.46 \text{ seconds}$$
We need to convert this into seconds. See Unit Conversions if the steps below are unfamiliar to you.
$$ 338.46 \text{ seconds} \cdot \frac{1 \text{ minute}}{60 \text{ seconds}} $$
$$ \approx 5.64 \text{ minutes} $$
$$ (0.64) \text{ of a minute} = 0.64 \cdot 60 \text{ seconds}$$
$$ \approx 38 \text{ seconds} $$
Alternatively, we know that there are 300 seconds in 5 minutes, which means 338.46 seconds is approximately 5 minutes and 38 seconds.