A rowing team entered at 2000-meter race. The team's coach is analyzing the race based on the team's split times, as shown in the table below. A split time is the time it takes to complete
a 500-meter segment of the race.
Race Summary \text{Race Summary} Race Summary
Split Race segment Split time Total race time number (meters) (seconds) at end of split (seconds) 1 0 − 500 89 89 2 500 − 1000 102 191 3 1000 − 1500 95 286 4 1500 − 2000 99 385 \small \begin{array} {|c|c|c|c|} \hline
& & & \\
\text{Split} &
\text{Race segment} &
\text{Split time} &
\text{Total race time} \\
\text{number} & \text{(meters)} & \text{(seconds)} & \text{at end of split} \\
& & & \text{(seconds)} \\ \hline
1 & 0-500 & 89 & 89 \\ \hline
2 & 500-1000 & 102 & 191 \\ \hline
3 & 1000-1500 & 95 & 286 \\ \hline
4 & 1500-2000 & 99 & 385 \\ \hline
\end{array}
Split number 1 2 3 4 Race segment (meters) 0 − 500 500 − 1000 1000 − 1500 1500 − 2000 Split time (seconds) 89 102 95 99 Total race time at end of split (seconds) 89 191 286 385
During the second and third split of the race, the team rowed at a rate of approximately 30 strokes per minute. Which is closest to the number of
strokes it took the team to complete
both the second and third split?
Since the times in the table are given in seconds, let's first convert the given rate into strokes per second.
30 strokes 1 minute \frac{30 \text{ strokes}}{1 \text{ minute}} 1 minute 30 strokes
30 strokes 1 minute ⋅ 1 minute 60 seconds \frac{30 \text{ strokes}}{1 \cancel{\text{ minute}}} \cdot \frac{1 \cancel{\text{ minute}}}{60 \text{ seconds}} 1 minute 30 strokes ⋅ 60 seconds 1 minute
= 1 stroke 2 seconds = \frac{1 \text{ stroke}}{2 \text { seconds}} = 2 seconds 1 stroke
From the given table, we can calculate the total combined time for splits 2 and 3.
Split Race segment Split time Total race time number (meters) (seconds) at end of split (seconds) 1 0 − 500 89 89 2 500 − 1000 102 191 3 1000 − 1500 95 286 4 1500 − 2000 99 385 \begin{array} {|c|c|c|c|} \hline
& & & \\
\text{Split} &
\text{Race segment} &
\text{Split time} &
\text{Total race time} \\
\text{number} & \text{(meters)} & \text{(seconds)} & \text{at end of split} \\
& & & \text{(seconds)} \\ \hline
1 & 0-500 & 89 & 89 \\ \hline
2 & 500-1000 & \colorbox{aqua}{$102$} & 191 \\ \hline
3 & 1000-1500 & \colorbox{aqua}{$95$} & 286 \\ \hline
4 & 1500-2000 & 99 & 385 \\ \hline
\end{array}
Split number 1 2 3 4 Race segment (meters) 0 − 500 500 − 1000 1000 − 1500 1500 − 2000 Split time (seconds) 89 102 95 99 Total race time at end of split (seconds) 89 191 286 385
combined time = 102 + 95 \text{ combined time} = 102+95 combined time = 102 + 95
= 197 seconds = 197 \text{ seconds} = 197 seconds
Using the given rate and time, we can calculate the total number of strokes needed to complete the second and third split.
= 1 stroke 2 seconds ⋅ 197 seconds = \frac{1 \text{ stroke}}{2 \cancel{\text { seconds}}} \cdot 197 \cancel{\text{ seconds}} = 2 seconds 1 stroke ⋅ 197 seconds
= 98.5 strokes = 98.5 \text{ strokes} = 98.5 strokes
≈ 99 strokes \approx \boxed{99} \text{ strokes} ≈ 99 strokes