A rowing team entered at 2000-meter race. The team's coach is analyzing the race based on the team's split times, as shown in the table below. A split time is the time it takes to complete
a 500-meter segment of the race.
$$ \text{Race Summary} $$
$$ \small \begin{array} {|c|c|c|c|} \hline
& & & \\
\text{Split} &
\text{Race segment} &
\text{Split time} &
\text{Total race time} \\
\text{number} & \text{(meters)} & \text{(seconds)} & \text{at end of split} \\
& & & \text{(seconds)} \\ \hline
1 & 0-500 & 89 & 89 \\ \hline
2 & 500-1000 & 102 & 191 \\ \hline
3 & 1000-1500 & 95 & 286 \\ \hline
4 & 1500-2000 & 99 & 385 \\ \hline
\end{array}
$$
During the second and third split of the race, the team rowed at a rate of approximately 30 strokes per minute. Which is closest to the number of
strokes it took the team to complete
both the second and third split?
Since the times in the table are given in seconds, let's first convert the given rate into strokes per second.
$$ \frac{30 \text{ strokes}}{1 \text{ minute}}$$
$$ \frac{30 \text{ strokes}}{1 \cancel{\text{ minute}}} \cdot \frac{1 \cancel{\text{ minute}}}{60 \text{ seconds}}$$
$$ = \frac{1 \text{ stroke}}{2 \text { seconds}} $$
From the given table, we can calculate the total combined time for splits 2 and 3.
$$ \begin{array} {|c|c|c|c|} \hline
& & & \\
\text{Split} &
\text{Race segment} &
\text{Split time} &
\text{Total race time} \\
\text{number} & \text{(meters)} & \text{(seconds)} & \text{at end of split} \\
& & & \text{(seconds)} \\ \hline
1 & 0-500 & 89 & 89 \\ \hline
2 & 500-1000 & \colorbox{aqua}{$102$} & 191 \\ \hline
3 & 1000-1500 & \colorbox{aqua}{$95$} & 286 \\ \hline
4 & 1500-2000 & 99 & 385 \\ \hline
\end{array}
$$
$$ \text{ combined time} = 102+95 $$
$$ = 197 \text{ seconds} $$
Using the given rate and time, we can calculate the total number of strokes needed to complete the second and third split.
$$ = \frac{1 \text{ stroke}}{2 \cancel{\text { seconds}}} \cdot 197 \cancel{\text{ seconds}}$$
$$ = 98.5 \text{ strokes} $$
$$ \approx \boxed{99} \text{ strokes} $$