There are three primary forms of the quadratic function:
$$ f(x)=x^2+4(x-3) $$
We can expand the given equation to obtain the standard form \(f(x)=ax^2+bx+c\).
$$f(x)=x^2+4x-12 \tag*{\tiny standard form}$$
The standard form displays the \(y\)-intercept.
$$f(x)=x^2+4x+\colorbox{aqua}{$-12$} $$
Factoring the equation results in the factored form \( f(x)=a(x-b)(x-c) \).
$$ f(x)=(x+6)(x-4) \tag*{\tiny factored form} $$
The factored form displays the \(x\)-intercepts.
$$ f(x)=(x-\colorbox{aqua}{$-6$})(x-\colorbox{aqua}{4}) $$
Using the standard form, we can complete the square to obtain the vertex form \(f(x)=a(x-h)^2+k \).
$$f(x)=x^2+4x-12 $$
$$ f(x)= \underbrace{x^2 + 4x \colorbox{yellow}{$+4$}}_\text{perfect square trinomial} -12 \colorbox{yellow}{$-4$} $$
$$ f(x)=(x+2)^2-16 \tag*{\tiny vertex form}$$
The vertex form displays the vertex.
$$ f(x)=(x-\colorbox{aqua}{$-2$})^2+\colorbox{aqua}{$-16$} $$