We can factor the polynomial by grouping.
p(x)=x3+x2−4x−4
p(x)=x2(x+1)−4(x+1)
p(x)=(x2−4)(x+1)
p(x)=(x−2)(x+2)(x+1)
In this form, we clearly see that it is divisible by x+1 and x+2.
If a binomial term is a factor of a polynomial, it refers to the zero or x-intercept of the polynomial. For example, if x−a is a factor of a polynomial, a
must be a zero or x-intercept to the polynomial. We can check whether the three choices are x-intercepts:
p(x)=x3+x2−4x−4
0=x3+x2−4x−4
x=−1
0=(−1)3+(−1)2−4(−1)−4
0=−1+1+4−4
0=0 ✓
x=−2
0=(−2)3+(−2)2−4(−2)−4
0=−8+4+8−4
0=0 ✓
x=−3
0=(−3)3+(−3)2−4(−3)−4
0=−27+9+12−4
0=−10 ✖