$$ p(t)=2t+3$$
$$ r(t)=t^2+1 $$
$$ s(t)=2t^2-5$$
The polynomial functions \(p, r,\) and \(s\) are defined above. Which of the following is equivalent to \(3p(t)-2r(t)-4s(t) \) ?
$$ 3p(t)-2r(t)-4s(t) $$
$$ =3(2t+3)-2(t^2+1)-4(2t^2-5) $$
$$ =6t+9-2t^2-2-8t^2+20$$
$$ =\boxed{-10t^2+6t+27} $$
We can try substituting an arbitrary value of \(t\). For example, substituting \(t=0\):
 
$$ p(t)=2t+3$$
$$ p(0)=2(0)+3 $$
$$ p(0)=3$$
 
$$ r(t)=t^2+1 $$
$$ r(0)=(0)^2+1 $$
$$ r(0)=1 $$
 
$$ s(t)=2t^2-5 $$
$$ s(0)=2(0)^2-5 $$
$$ s(0)=-5$$
$$ 3p(t)-2r(t)-4s(t) $$
$$ 3p(0)-2r(0)-4s(0) $$
$$ =3(3)-2(1)-4(-5) $$
$$ =9-2+20$$
$$ = 27 $$
Browsing the answer choices, only the last option evaluates to \(27\) when \(t=0\).