$$ \begin{array} {|c|c|} \hline
\text{Types of fruits} & \text{Percent of fruits} \\ \hline
\text{Apples} & 30\% \\ \hline
\text{Oranges} & 15 \% \\ \hline
\text{Kiwis} & 20\% \\ \hline
\text{Bananas} & 20\% \\ \hline
\text{Watermelons} & 15\% \\ \hline
\end{array}
$$
The table above shows the distribution of the five types of fruit in a fruit stand. If there are 20 more kiwis than oranges, how many fruit are in the fruitstand?
Kiwis and oranges make up 20% and 15% of the total, respectively. Therefore, the difference between the two fruit is 5% of the total.
$$ \begin{array} {|c|c|} \hline
\text{Types of fruits} & \text{Percent of fruits} \\ \hline
\text{Apples} & 30\% \\ \hline
\colorbox{aqua}{\text{Oranges}} & 15 \% \\ \hline
\colorbox{aqua}{\text{Kiwis}} & 20\% \\ \hline
\text{Bananas} & 20\% \\ \hline
\text{Watermelons} & 15\% \\ \hline
\end{array}
$$
The question mentions that there are 20 more kiwis than oranges. Therefore,
$$ 20 = 5\% \text{ of the total}$$
$$ 20 = 0.05 \cdot \text{total} $$
$$ 20 = \frac{1}{20} \cdot \text{total} $$
$$ 20 \cdot 20 = \text{total} $$
$$ \boxed{400} = \text{total} $$
We can use the answer choices to solve this problem, or just to check our work.
For example, here's how we would go about using the correct answer choice, \( \boxed{400} \).
Oranges
$$ \text{Oranges} = 15\% \text { of total}$$
$$ \text{Oranges} = 0.15 \cdot (400) $$
$$ \text{Oranges} = 60 $$
Kiwis
$$ \text{Kiwis} = 20\% \text { of total}$$
$$ \text{Kiwis} = 0.20 \cdot (400) $$
$$ \text{Kiwis} = 80 $$
$$ \text{Kiwis} - \text{Oranges} = 20 $$
$$ 80-60 = 20 \checkmark $$