$$ \begin{array}{|c|c|}\hline
x & h(x) \\ \hline
-2 & -2 \\ \hline
1 & 7 \\ \hline
4 & 16 \\ \hline
\end{array}
$$
The table above shows selected values for the function \(h\). In the \(xy\)-plane, the graph of \(y=h(x)\) is a line. What is the value of \(h(6)\) ?
Function notation provides a different way of presenting the standard \(xy\) table of values.
$$ \begin{array}{|c|c|}\hline
x & h(x) \text{ or } y \\ \hline
-2 & -2 \\ \hline
1 & 7 \\ \hline
4 & 16 \\ \hline
\end{array}
$$
We can find the slope, or change in \(y\) per change of \(x\), as usual. From \((1,7)\) to \((4,16) \),
$$ m = \frac{16-7}{4-1} $$
$$ m= \frac{9}{3} $$
$$ m=3 $$
Therefore, if we want to find \(h(6)\), we need only extend the table and use the appropriate rate of change.
$$ \begin{array}{|c|c|}\hline
x & h(x) \text{ or } y \\ \hline
-2 & -2 \\ \hline
1 & 7 \\ \hline
4 & 16 \\ \hline
5 & 19 \\ \hline
6 & \boxed{22} \\ \hline
\end{array}
$$
We can constuct a linear model for the table. Using an arbitrary point on the table and the slope,
$$ \begin{array}{|c|c|}\hline
x & h(x) \text{ or } y \\ \hline
-2 & -2 \\ \hline
\colorbox{aqua}{$1$} & \colorbox{aqua}{$7$} \\ \hline
4 & 16 \\ \hline
\end{array}
$$
$$ y-y_1=m(x-x_1) $$
$$ y-7=3(x-1) $$
Substituting \(x=6\):
$$ y-7=3(6-1) $$
$$ y-7=15 $$
$$ y=\boxed{22} $$