Radioactive substances decay over time. The mass \(M\), in grams, of a particular radioactive substance \(d\) days after the beginning of an experiment is shown in the table below.
$$\begin{array}{|c|c|} \hline
\text{Number of days, } d & \text{Mass}, M \text{ (grams)} \\ \hline
0 & 45.00 \\ \hline
30 & 40.57 \\ \hline
60 & 36.58 \\ \hline
90 & 32.98 \\ \hline
\end{array}
$$
If this relationship is modeled by the function \(M(d)=a\cdot 10^{bd} \), which of the following could be the values of \(a\) and \(b\)?
We can first use the row \(d=0, M=45\) to find the value of \(a\):
$$ M(0)=45 $$
$$M(d)=a\cdot 10^{bd}$$
$$ 45 = a \cdot 10^{b(0)} $$
$$ 45 = a \cdot 10^0 $$
$$ 45 = a $$
Substitute this value back into the initial equation:
$$M(d)=45\cdot 10^{bd}$$
We can use another point, such as \(d=30, M=40.57\) to find the value of \(b\):
$$ M(30)=40.57 $$
$$40.57=45\cdot 10^{b(30)}$$
$$ 40.57 = 45 \cdot 10^{30b} $$
$$ \frac{40.57}{45}=10^{30b} $$
$$ 0.90=10^{30b} $$
We can test options 3 and 4 to confirm which one is the correct choice, or we can use logarithms.
Option 3
$$ 0.90=10^{30b} $$
$$ 0.90=10^{30(0.0015)} $$
$$ 0.90 \neq 1.11   ✖ $$
Option 4
$$ 0.90=10^{30b} $$
$$ 0.90=10^{30(-0.0015)} $$
$$ 0.90=0.90   \checkmark $$
Solving with logarithms:
$$ 0.90=10^{30b} $$
$$ \log{0.90}=\log{10^{30b}} $$
$$ \log{0.90}=30b $$
$$ b = \frac{\log{0.90}}{30} $$
$$ b \approx -0.0015 $$