$$ \begin{array}{|c|c|c|c|} \hline
& \text{Type A} & \text{Type B}& \text{Type C} \\ \hline
\text{Category 1} & 12 & 34 & 16 \\ \hline
\text{Category 2} & 15 & 46 & 25 \\ \hline
\text{Category 3} & 3 & 14 & 20 \\ \hline
\end{array} $$
The table above summarizes items by type and category. What is the probability that the selected item will not be in category 2?
We can manually count the total number of items not in category 2 and divide that by the total number of items. It would help if we added rows and columns for total values:
$$ \begin{array}{|c|c|c|c|c|} \hline
& \text{Type A} & \text{Type B}& \text{Type C}& \text{Total} \\ \hline
\text{Category 1} & 12 & 34 & 16 & 62 \\ \hline
\text{Category 2} & 15 & 46 & 25 & 86\\ \hline
\text{Category 3} & 3 & 14 & 20 &37\\ \hline
\text{Total} & & & &185\\ \hline
\end{array} $$
The probability that is is not in category 2 can be found:
$$ \text{Probability of not category 2}= 1- \text{probability of category 2} $$
$$ = 1-\frac{86}{185} $$
$$ = \boxed{\frac{99}{185}} $$
You could also simply calculate the probability of being in category 1 and 3.