The table below shows the number of lakes in California classified by alkalinity and depth.
$$ \small
\begin{array} {|l|} \hline
\\ \text{Depth class} \\ \hline
\text{Shallow} \\ \hline
\text{Moderate} \\ \hline
\text{Deep} \\ \hline
\text{Total} \\ \hline
\end{array}
\begin{array} {c c c c|} \hline
\hspace{1.5em}& \hspace{1.5em} \text{Alkalinity} & \hspace{-1.5em} \text{class} & \hspace{4em} \\ \hline
\text{Low} & \text{Medium} & \text{High} & \text{Total} \\ \hline
372 & 450 & 825 & 1{,}647 \\ \hline
366& 512 & 255 & 1{,}133\\ \hline
91 & 111& 123 & 325 \\ \hline
829 & 1{,}073 & 1{,}203 & 3{,}105\\ \hline
\end{array}
$$
If a lake has medium alkalinity, which of the following is closest to the probability that the lake also has a moderate or deep depth?
We are looking for the following:
$$ \frac{\text{moderate or deep lake}}{\text{medium alkalinity lake}} $$
$$
\begin{array} {|l|} \hline
\\ \text{Depth class} \\ \hline
\text{Shallow} \\ \hline
\colorbox{yellow}{\text{Moderate}} \\ \hline
\colorbox{yellow}{\text{Deep}} \\ \hline
\text{Total} \\ \hline
\end{array}
\begin{array} {c c c c|} \hline
\hspace{1.5em}& \hspace{1.5em} \text{Alkalinity} & \hspace{-1.5em} \text{class} & \hspace{4em} \\ \hline
\text{Low} & \colorbox{yellow}{\text{Medium}} & \text{High} & \text{Total} \\ \hline
372 & 450 & 825 & 1{,}647 \\ \hline
366& \colorbox{aqua}{$512$} & 255 & 1{,}133\\ \hline
91 & \colorbox{aqua}{$111$}& 123 & 325 \\ \hline
829 & \colorbox{chartreuse}{$1{,}073$} & 1{,}203 & 3{,}105\\ \hline
\end{array}
$$
Out of the 1,073 lakes, 512 and 111 are moderate or deep.
$$ \frac{\text{moderate or deep lake}}{\text{medium alkalinity lake}} $$
$$ \frac{512+111}{1{,}073} $$
$$ \approx \boxed{0.58} $$