The table below lists the results of a survey of a random sample of 400 high school students. Each student selected one subject that was his or her favorite.
$$
\text{Favorite High School Subjects} \\
$$
$$\footnotesize
\begin{array}
{|c|c|c|c|c|c|c|c|} \hline
& \text{English} & \text{Art} & \text{Math} & \text{History} & \text{Science} & \text{Other} & \text{Total} \\ \hline
\text{Freshmen} & 13 & 12 & 15 &18 & 25 & 17 & 100 \\ \hline
\text{Sophomores} & 18 & 14 & 11 &22 & 15 & 20 & 100 \\ \hline
\text{Juniors} & 5 & 10 & 23 & 13 & 31 & 18 & 100 \\ \hline
\text{Seniors} & 23 & 5 & 33 & 13 & 12 & 14 & 100 \\ \hline
\text{Total} & 59& 41&82 &66 &83 &69 & 400 \\ \hline
\end{array}
$$
If one of the students from the sample is selected at random, which of the following is closest to the probability that the student is a sophomore or junior who
selected science or math as his or her favorite high school subject?
We wish to find the following:
$$ \frac{\colorbox{aqua}{\text{Sophomore or junior who selected science or math}}}{\colorbox{yellow}{\text{A student from the sample}}} $$
Using the data from the table:
$$
\begin{array}
{|c|c|c|c|c|c|c|c|} \hline
& \text{English} & \text{Art} & \text{Math} & \text{History} & \text{Science} & \text{Other} & \text{Total} \\ \hline
\text{Freshmen} & 13 & 12 & 15 &18 & 25 & 17 & 100 \\ \hline
\text{Sophomores} & 18 & 14 & \colorbox{aqua}{$11$} &22 & \colorbox{aqua}{$15$} & 20 & 100 \\ \hline
\text{Juniors} & 5 &10 & \colorbox{aqua}{$23$} & 13 & \colorbox{aqua}{$31$} & 18 & 100 \\ \hline
\text{Seniors} & 23 & 5 & 33 & 13 & 12 & 14 & 100 \\ \hline
\text{Total} & 59& 41&82 &66 &83 &69 & \colorbox{yellow}{$400$} \\ \hline
\end{array}
$$
$$ \frac{\colorbox{aqua}{\text{Sophomore or junior who selected science or math}}}{\colorbox{yellow}{\text{A student from the sample}}} $$
$$ =\frac{11+23+15+31}{400}$$
$$ = \frac{80}{400} $$
$$ = \boxed{0.20} $$