$$ x^2-20x+y^2-16y=-20 $$
The equation above defines a circle in the \(xy\)-plane. What is the radius of the circle?
We'll need to rewrite the equation into standard form:
$$ (x-h)^2+(y-k)^2=r^2 $$
In order to do this, we must complete the square as follows:
$$ x^2-20x+y^2-16y=-20 $$
$$ x^2-20x+\colorbox{aqua}{$100$} +y^2-16y=-20+\colorbox{aqua}{$100$} $$
$$ x^2-20x+100 +y^2-16y+\colorbox{yellow}{$64$}=-20+100+\colorbox{yellow}{$64$} $$
$$ \underbrace{x^2-20x+100}_\text{perfect square trinomial} + \underbrace{y^2-16y+64}_\text{perfect square trinomials} = -20+100+64 $$
$$ (x-10)^2+(y-8)^2=144 $$
$$ (x-10)^2+(y-8)^2=12^2$$
$$ r=\boxed{12} $$