For \(x\gt 0\), \(\dfrac{d}{dx}\left(\int\limits_0^{3x}\ln(t^3+1)  dt\right) =\)
\(\ln(x^3+1) \)
\(\ln(27x^3+1) \)
\(3\ln(x^3+1) \)
\(3\ln(27x^3+1) \)
Summary
Submit
Skip Question
Approach
$$ \frac{d}{dx}\left(\int\limits_0^{3x}\ln(t^3+1)  dt\right) $$ $$ = \ln((3x)^3+1) \cdot \frac{d}{dx}(3x) $$ $$ = \boxed{3\ln(27x^3+1)} $$