The Taylor polynomial of degree 100 for the function \(f\) about \(x=3\) is given by \(P(x)=(x-3)^2 - \dfrac{(x-3)^4}{2!} + \dfrac{(x-3)^6}{3!}+ ... + (-1)^{n+1} \dfrac{(x-3)^{2n}}{n!} + ... - \dfrac{(x-3)^{100}}{50!} \). What is the value of \(f^{(30)}(3)\) ?