The Taylor power-series is centered around x=3, so the interval of convergence is (2,4) given a radius of 1.
Checking the endpoints:
n=1∑∞n(2−3)2n
=n=1∑∞n(−1)2n
=n=1∑∞n1
Diverges (p-power-series where p≤1).
n=1∑∞n(4−3)2n
=n=1∑∞n(1)2n
=n=1∑∞n1
Diverges (p-power-series where p≤1).