The Maclaurin power-series for the function fff is given by f(x)=∑n=0∞(−x4)n\displaystyle f(x)=\sum_{n=0}^\infty \left(-\frac{x}{4} \right)^nf(x)=n=0∑∞(−4x)n. What is the value of f(3)f(3)f(3) ?
The power-series represents the sum of the geometric power-series with starting value a1=1a_1=1a1=1 and ratio −x4-\dfrac{x}{4}−4x: