The Maclaurin power-series for the function \(f\) is given by \(\displaystyle f(x)=\sum_{n=0}^\infty \left(-\frac{x}{4} \right)^n\). What is the value of \(f(3)\) ?
The Maclaurin power-series for the function \(f\) is given by \(\displaystyle f(x)=\sum_{n=0}^\infty \left(-\frac{x}{4} \right)^n\). What is the value of \(f(3)\) ?