For t ≥ 0 t\geq 0 t ≥ 0 , the position of a particle moving along the x x x -axis is given by x ( t ) = sin t − cos t x(t)=\sin t-\cos t x ( t ) = sin t − cos t . What
is the acceleration of the particle at the point where the velocity is first equal to 0 0 0 ?
Obtaining the velocity and acceleration functions:
x ( t ) = sin t − cos t x(t)=\sin t-\cos t x ( t ) = sin t − cos t
v ( t ) = cos t + sin t v(t)= \cos t + \sin t v ( t ) = cos t + sin t
a ( t ) = − sin t + cos t a(t)= -\sin t + \cos t a ( t ) = − sin t + cos t
Finding the value of t t t where velocity is 0 0 0 :
0 = cos t + sin t 0 = \cos t + \sin t 0 = cos t + sin t
− sin t = cos t -\sin t = \cos t − sin t = cos t
− sin t cos t = 1 -\frac{\sin t}{\cos t}=1 − cos t sin t = 1
tan t = − 1 \tan t = -1 tan t = − 1
t = 3 π 4 t= \frac{3\pi}{4} t = 4 3 π
Calculating the acceleration at this time:
a ( 3 π 4 ) = − sin ( 3 π 4 ) + cos ( 3 π 4 ) a\left(\frac{3\pi}{4}\right)= -\sin \left(\frac{3\pi}{4}\right) + \cos \left(\frac{3\pi}{4}\right) a ( 4 3 π ) = − sin ( 4 3 π ) + cos ( 4 3 π )
= − 2 2 + ( − 2 2 ) = -\frac{\sqrt{2}}{2} + \left(-\frac{\sqrt{2}}{2}\right) = − 2 2 + ( − 2 2 )
= − 2 2 2 = -\frac{2\sqrt{2}}{2} = − 2 2 2
= − 2 = \boxed{-\sqrt{2}} = − 2