We could attempt to convert the polar equation into a rectangular equation. However, this is a bit difficult. Instead, we can find:
dθdxdθdy=dxdy
y=rsinθx=rcosθ
y=(1+2sinθ)sinθ
dθdy=(1+2sinθ)cosθ+sinθ(2cosθ)
dθdy∣∣θ=0=[1+2(0)](1)+(0)[2(1)]
dθdy∣∣θ=0=1
x=(1+2sinθ)cosθ
dθdx=(1+2sinθ)(−sinθ)+cosθ(2cosθ)
dθdx∣∣θ=0=[1+2(0)](−0)+(1)[2(1)]
dθdx∣∣θ=0=2
dxdy=dθdxdθdy=21