$$ \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{dy}{dx} $$
\(y=r\sin{\theta}\)
$$ y=2\theta\sin{\theta} $$
$$ \frac{dy}{d\theta}=2\theta\cos{\theta}+2\sin{\theta} $$
$$ \frac{dy}{d\theta}\Big|_{\theta=\pi/2} = 2\left(\frac{\pi}{2}\right)\cos{\frac{\pi}{2}}+2\sin{\frac{\pi}{2}}$$
$$ \frac{dy}{d\theta}= 2 $$
\( x=r\cos{\theta}\)
$$ x=2\theta\cos{\theta} $$
$$ \frac{dx}{d\theta}=-2\theta\sin{\theta}+2\cos{\theta} $$
$$ \frac{dx}{d\theta}\Big|_{\theta=\pi/2}=-2\left(\frac{\pi}{2}\right)\sin{\frac{\pi}{2}}+2\cos{\frac{\pi}{2}} $$
$$ \frac{dx}{d\theta} = -\pi $$
$$ \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{dy}{dx} =\boxed{-\frac{2}{\pi}} $$