\(\displaystyle \int \frac{6x^2-4x-25}{x-2}  dx \) =
Use long division or synthetic division:
$$ \begin{array}{r}
6x+8\phantom{-10} \\
x-2{\overline{\smash{\big)}\,6x^2-4x-25}} \\
\underline{-(6x^2-12x)} \hphantom{-9}\\
8x-25\phantom{2} \\
\underline{-(8x-16)} \\
\end{array} $$
$$ \text{ Remainder}=-9 $$
$$ \int\frac{6x^2-4x-25}{x-2} = \int 6x+8 -\frac{9}{x-2} $$
$$ = \boxed{ 3x^2+8x-9\ln|x-2| + C} $$