Integration by partial fractions:
$$ \frac{8}{x^2-4} = \frac{A}{x+2} + \frac{B}{x-2} $$
$$ Ax-2A+Bx+2B=8 $$
$$ A+B=0 \hskip{2em} -2A+2B=8 $$
$$ A=-2, B=2 $$
$$ \int \frac{8}{x^2-4}  dx = \int \frac{-2}{x+2} + \frac{2}{x-2}   dx$$
$$ = -2\ln|x+2|+2\ln|x-2|+C $$
$$ = \boxed{2\ln\left|\dfrac{x-2}{x+2} \right| + C } $$