\( \lim\limits_{x\to\infty} \dfrac{\sqrt{9x^4-2}}{4x^2-2x+5} \)
When determining limits at infinity, only the highest power terms in the numerator and denominator are relevant.
$$ \lim\limits_{x\to\infty} \dfrac{\sqrt{9x^4-2}}{4x^2-2x+5} \approx \lim\limits_{x\to\infty} \frac{\sqrt{9x^4}}{4x^2} $$
$$ = \lim\limits_{x\to\infty}\frac{3x^2}{4x^2} $$
$$ = \lim\limits_{x\to\infty}\frac{3}{4} $$
$$ = \boxed{\frac{3}{4}}$$
We can divide the numerator and denominator by \(x^2\).
Numerator
$$ \sqrt{9x^4-2} \div x^2 $$
$$ = \sqrt{\frac{9x^4-2}{x^4}} $$
$$ = \sqrt{9-\frac{2}{x^4}} $$
Denominator
$$ 4x^2-2x+5 \div x^2 $$
$$ = \frac{4x^2-2x+5}{x^2} $$
$$ = 4-\frac{2}{x}+\frac{5}{x^2} $$
$$ \lim\limits_{x\to\infty} \dfrac{\sqrt{9-\frac{2}{x^4}}}{4-\frac{2}{x}+\frac{5}{x^2}} $$
Recall that as \(x\) approaches large values, fractions in the form of \(\dfrac{c}{x^r}\) approach 0.
$$ = \frac{\sqrt{9-0}}{4-0+0} $$
$$ = \boxed{\frac{3}{4}} $$