\(\displaystyle \int_1^\infty xe^{-x^2}  dx \) is
Use \(u\)-substitution where \(u=-x^2\). Keep the lower and upper limits with respect to \(x\).
$$ \int\limits_1^\infty xe^{-x^2}  dx = \int\limits_{1}^\infty -\frac{e^u}{2}   du $$
$$ = \lim\limits_{b\to\infty} -\frac{e^{-x^2}}{2} \Big|_{1}^b $$
$$ = \lim\limits_{b\to\infty} -\frac{1}{2} \left[\frac{1}{e^{b^2}}-\frac{1}{e}\right] $$
$$ = \boxed{\frac{1}{2e}} $$