If \((x+2y)\cdot \dfrac{dy}{dx}=2x-y\), what is the value of \(\dfrac{d^2y}{dx^2}\) at the point \((3,0)\) ?
$$ (x+2y)\cdot \dfrac{dy}{dx}=2x-y $$
Solve for \(\frac{dy}{dx}\) and differentiate.
$$ \frac{dy}{dx}=\frac{2x-y}{x+2y} $$
$$ \frac{d^2y}{dx^2}=\frac{(x+2y)(2-\frac{dy}{dx})-(2x-y)(1+2\frac{dy}{dx})}{(x+2y)^2} $$
Find the value of \(\frac{dy}{dx}\) at the point:
$$ \frac{dy}{dx}\Big|_{(3,0)}=\frac{2(3)-0}{3+2(0)} $$
$$\frac{dy}{dx}\Big|_{(3,0)} = 2 $$
Substitute known values into the second derivative:
$$ \frac{d^2y}{dx^2}=\frac{((3)+2(0))(2-(2))-(2(3)-(0))(1+2(2))}{((3+2(0))^2} $$
$$ = \frac{(3)(0)-(6)(5)}{3^2} $$
$$ = -\frac{30}{9} $$
$$ = \boxed{-\frac{10}{3}} $$