Differentiate both sides of the equation with respect to \(x\).
$$x^3+3xy+2y^3=17$$
$$\dfrac{d}{dx}(x^3+3xy+2y^3)=\frac{d}{dx}(17)$$
Using the appropriate rules for each term,
$$\underbrace{\dfrac{d}{dx}(x^3)}_\text{power rule}+3\underbrace{\dfrac{d}{dx}(xy)}_\text{product/chain rule}+
2\underbrace{\dfrac{d}{dx}(y^3)}_\text{power/chain rule}=\underbrace{\frac{d}{dx}(17)}_\text{constant rule}$$
$$ 3x^2+3\left(x\cdot\frac{dy}{dx}+y\cdot1\right)+2\cdot3y^2\cdot\frac{dy}{dx}=0$$
We can divide all terms by 3, then solve for \(\dfrac{dy}{dx}\):
$$ x^2+x\frac{dy}{dx}+y+2y^2\frac{dy}{dx}=0$$
$$ x\frac{dy}{dx}+2y^2\frac{dy}{dx}=-x^2-y$$
$$ (x+2y^2)\frac{dy}{dx}=-(x^2+y)$$
$$ \frac{dy}{dx}=-\frac{x^2+y}{x+2y^2} $$