If \(\sin(xy)=x\), then \(\dfrac{dy}{dx}=\)
$$ \sin(xy)=x $$
$$ \cos(xy)\cdot \left(x\frac{dy}{dx}+y\right)=1 $$
$$ x\frac{dy}{dx}+y = \frac{1}{\cos(xy)} $$
$$ x\frac{dy}{dx}= \frac{1}{\cos(xy)} -y $$
$$ x\frac{dy}{dx}= \frac{1-y\cos(xy)}{\cos(xy)} $$
$$ \frac{dy}{dx}=\boxed{\frac{1-y\cos(xy)}{x\cos(xy)} } $$