Apply the first derivative test.
$$ f(x)= 300x-x^3 $$
$$ f'(x)=300-3x^2 \tag*{\scriptsize Differentiate.}$$
$$ 0 = 300-3x^2 \tag*{\scriptsize Find critical numbers.}$$
$$ 0 = 100-x^2 $$
$$ 0 = (10+x)(10-x) $$
$$ x= -10 \text{ and } 10 $$
The table below summarizes testing of the three intervals determined by the critical numbers.
$$ \begin{array}{|c|c|c|c|} \hline
\text{Interval} & -\infty \lt x \lt -10 & -10 \lt x \lt 10 & 10 \lt x \lt \infty \\ \hline
\text{ Test Value} & x=-11 & x=0 & x= 11 \\ \hline
\text{ Sign of }f'(x) & f'(-11) \lt 0 & f'(0) \gt 0 & f'(11) \lt 0 \\ \hline
\text{Conclusion} & \text{Decreasing} & \text{Increasing} & \text{Decreasing} \\ \hline
\end{array} $$