x0.00.51.01.52.0f(x)1.00.70.50.40.3 \begin{array}{|c||c|c|c|c|c|} \hline x & 0.0 & 0.5 & 1.0 & 1.5& 2.0 \\ \hline f'(x) & 1.0 & 0.7 & 0.5 & 0.4 & 0.3 \\ \hline \end{array}

calculator allowed Let y=f(x)y=f(x) be the solution to the differential equation dydx=f(x)\dfrac{dy}{dx}=f'(x) with initial condition f(1)=5f(1)=5. Selected values of f(x)f'(x) are given in the table above. What is the approximation for f(2)f(2) if Euler's method is used with a step size of 0.50.5, starting at x=1x=1 ?