Rewrite the expression. Bring the exponent to the front.
$$ \ln\frac{1}{1-x}$$
$$ \ln(1-x)^{-1} $$
$$ -\ln(1-x) $$
We can differentiate this expression using the chain rule.
$$ \frac{d}{dx}(-\ln(1-x)) =-\frac{1}{1-x}\cdot-1$$
$$ = \boxed{\frac{1}{1-x}}$$
Use the quotient rule of logarithms to rewrite the expression.
$$ \ln\frac{1}{1-x}$$
$$ =\ln1 - \ln(1-x)$$
Differentiate, using the chain rule for the second part.
$$ \frac{d}{dx}\ln1+\frac{d}{dx}(-\ln(1-x)) $$
$$ = 0 - \frac{1}{1-x} \cdot -1 $$
$$ = \boxed{\frac{1}{1-x}}$$