If \(f(x)=x\sqrt{2x-3}\), then \(f'(x)=\)
Follow the product rule.
$$ \frac{d(uv)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx} $$
In our case, \(u=x\) and \(v=\sqrt{2x-3}\).
Calculating \(\frac{du}{dx}\) and \(\frac{dv}{dx}\)
 
$$u=x$$
$$\frac{du}{dx}=1$$
 
$$v=\sqrt{2x-3}=(2x-3)^{\frac{1}{2}}$$
$$ \frac{dv}{dx} = \frac{1}{2}(2x-3)^{-\frac{1}{2}}\cdot2 = \frac{1}{\sqrt{2x-3}}$$
Substituting the values into the product rule:
$$ f'(x)=\frac{d}{dx}(x\sqrt{2x-3})=x\cdot\frac{d}{dx}\sqrt{2x-3}+\sqrt{2x-3}\cdot\frac{d}{dx}x $$
$$ f'(x)= x\left(\frac{1}{\sqrt{2x-3}}\right) + \sqrt{2x-3}(1) $$
$$ f'(x)= \frac{x}{\sqrt{2x-3}}+\sqrt{2x-3} $$
$$ f'(x)= \frac{x}{\sqrt{2x-3}}+\frac{2x-3}{\sqrt{2x-3} }$$
$$ f'(x)=\frac{x+2x-3}{\sqrt{2x-3}} $$
$$ = \boxed{\frac{3x-3}{\sqrt{2x-3}}}$$