Follow the product rule.
dxd(uv)=udxdv+vdxdu
In our case, u=x and v=2x−3.
Calculating
dxdu and
dxdv
u=x
dxdu=1
v=2x−3=(2x−3)21
dxdv=21(2x−3)−21⋅2=2x−31
Substituting the values into the product rule:
f′(x)=dxd(x2x−3)=x⋅dxd2x−3+2x−3⋅dxdx
f′(x)=x(2x−31)+2x−3(1)
f′(x)=2x−3x+2x−3
f′(x)=2x−3x+2x−32x−3
f′(x)=2x−3x+2x−3
=2x−33x−3