If y=tanx−cotxy=\tan{x}-\cot{x}y=tanx−cotx, then dydx= \dfrac{dy}{dx}=dxdy=
Derive using the rules for tangent and cotangent. y=tanx−cotxy=\tan{x}-\cot{x}y=tanx−cotx dydx=sec2x−(−csc2x)\frac{dy}{dx}=\sec^2{x}-(-\csc^2{x})dxdy=sec2x−(−csc2x) =sec2x+csc2x =\boxed{\sec^2{x}+\csc^2{x}} =sec2x+csc2x