Rewrite \(f(x)\) into fractional exponent form.
$$ f(x)=\ln(\sqrt{x})=\ln{x^{\frac{1}{2}}} $$
$$ f(x)= \frac{1}{2}\ln{x} \tag*{\tiny log of power rule}$$
Calculating the first derivative,
$$ f'(x)= \frac{1}{2}\cdot \frac{1}{x} $$
$$ f'(x)= \frac{1}{2x} $$
Again, rewrite into fractional exponent form to calculate the second derivative,
$$ f''(x)=\frac{1}{2}x^{-1} $$
$$ =-1 \cdot \frac{1}{2} \cdot x^{-2} $$
$$ = \boxed{-\frac{1}{2x^2}}$$