If \( f(x)=x+ \sin{x}\), then \(f'(x)=\)
\( x+\cos{x} \)
\( 1-\cos{x} \)
\( 1+\cos{x} \)
\( \sin{x}-x\cos{x} \)
Summary
Submit
Skip Question
Approach
Use the constant rule and derivative rule for sine.
$$ \frac{d}{dx}(x+ \sin{x}) $$ $$ = \frac{d}{dx}x+\frac{d}{dx}\sin{x} $$ $$ = \boxed{1+\cos{x}} $$