xf(x)f(x)g(x)g(x)13234 \begin{array}{|c||c|c|c|c|} \hline x & f(x) & f'(x) & g(x) & g'(x) \\ \hline 1 & 3 & -2 & -3 & 4 \\ \hline \end{array}

The table above gives the values of the differentiable functions ff and gg and their derivatives at x=1x=1. If h(x)=(2f(x)+3)(1+g(x))h(x)=(2f(x)+3)(1+g(x)) , then h(1)=h'(1)=