Let \(f\) and \(g\) be differentiable functions with the following properties:

$$ \begin{array}{c l} (\text{i}) & g(x) \gt 0 \text{ for all } x \\ (\text{ii}) & f(0) = 1 \end{array} $$

If \(h(x)=f(x)g(x) \text{ and } h'(x)=f(x)g'(x)\), then \(f(x) =\)