Let ff and gg be differentiable functions with the following properties:

(i)g(x)>0 for all x(ii)f(0)=1 \begin{array}{c l} (\text{i}) & g(x) \gt 0 \text{ for all } x \\ (\text{ii}) & f(0) = 1 \end{array}

If h(x)=f(x)g(x) and h(x)=f(x)g(x)h(x)=f(x)g(x) \text{ and } h'(x)=f(x)g'(x), then f(x)=f(x) =