If \(f(x)=\sqrt{x^2-4}\) and \(g(x)=3x-2\), then the derivative of \(f(g(x))\) at \(x=3\) is
Use the chain rule to find the expression for the derivative:
$$ \frac{d}{dx} f(g(x)) = f'(g(x))\cdot g'(x) $$
At \(x=3\),
$$ f'(g(3))\cdot g'(3) $$
Obtaining the equations for \(f'\) and \(g'\):
\(f(x)=\sqrt{x^2-4} \)
$$ f'(x)=\frac{x}{\sqrt{x^2-4}}$$
\(g(x)=3x-2 \)
$$ g'(x)=3 $$
Using our equations:
$$ g(3)=7 $$
$$ g'(3)=3 $$
Putting it all together:
$$ f'(g(3))\cdot g'(3) $$
$$ = f'(7)\cdot 3 $$
$$ = \frac{7}{\sqrt{45}} \cdot 3 $$
$$ = \frac{7}{3\sqrt{5}}\cdot 3 $$
$$ = \boxed{\frac{7}{\sqrt{5}}} $$