We can rewrite the given definite integral:
$$ \int \limits_{\frac{\pi}{2}}^{\frac{\pi}{4}}-\frac{\cos{x}}{\sin{x}}   dx = \int \limits_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{\cos{x}}{\sin{x}}   dx $$
If we know the integration rule of trigonometric functions,
$$\int \limits_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{\cos{x}}{\sin{x}}   dx = \int \limits_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot{x}   dx$$
$$ = \Big[ \ln(\sin{x}) \Big]_{\frac{\pi}{4}}^{\frac{\pi}{2}} $$
$$ = \ln\left(\sin \frac{\pi}{2}\right) - \ln\left(\sin\frac{\pi}{4}\right) $$
$$ = \ln 1 - \ln \frac{\sqrt{2}}{2} = 0 - \ln\frac{\sqrt{2}}{2}$$
$$ = \ln\left(\frac{\sqrt{2}}{2}\right)^{-1} = \ln\frac{2}{\sqrt{2}} $$
$$ = \boxed{\ln\sqrt{2}} $$
By recognizing that the answer choices all contain \(\ln\), we can try anticipating integration to \(\ln\). With \(\sin{x}\) in the denominator, we can anticipate:
$$ f=\ln(\sin{x}) $$
Using the derivative rule for the natural logarithmic function and chain rule, we arrive at our desired expression,
$$ f'=\frac{\cos{x}}{\sin{x}} $$
Jump to Approach 1 for the corresponding steps.
We can use the substitution rule to integrate:
$$ \int \limits_{\frac{\pi}{2}}^{\frac{\pi}{4}}-\frac{\cos{x}}{\sin{x}}   dx = \int \limits_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{\cos{x}}{\sin{x}}   dx $$
Setting \(u=\sin{x}\)
Upper bound
$$ x=\frac{\pi}{2},  u=\sin{\frac{\pi}{2}}=1 $$
Lower bound
$$ x=\frac{\pi}{4},   u=\sin{\frac{\pi}{4}}=\frac{\sqrt{2}}{2} $$
Solving for \(dx\)
$$u=\sin{x}$$
$$ \frac{du}{dx}=\cos{x}$$
$$ \frac{du}{\cos{x}}=dx $$
Therefore,
$$ \int \limits_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{\cos{x}}{\sin{x}}   dx = \int \limits_{\frac{\sqrt{2}}{2}}^{1} \frac{\cos{x}}{u} \cdot \frac{du}{\cos{x}} = \int \limits_{\frac{\sqrt{2}}{2}}^{1} \frac{1}{u}   du$$
$$ = \Big[ \ln u \Big] _{\frac{\sqrt{2}}{2}}^{1} $$
$$ = \ln 1 - \ln \frac{\sqrt{2}}{2} = 0 - \ln\frac{\sqrt{2}}{2}$$
$$ = \ln\left(\frac{\sqrt{2}}{2}\right)^{-1} = \ln\frac{2}{\sqrt{2}} $$
$$ = \boxed{\ln\sqrt{2}} $$