Let fff and ggg be continous functions such that ∫05f(x) dx=18\int\limits_0^5 f(x) dx = 18 0∫5f(x) dx=18, ∫0513g(x) dx=4\int\limits_0^5 \dfrac{1}{3}g(x) dx = 4 0∫531g(x) dx=4, and ∫35(f(x)−g(x)) dx=2\int\limits_3^5 (f(x)-g(x)) dx = 2 3∫5(f(x)−g(x)) dx=2. What is the value of ∫03(f(x)−g(x)) dx=18\int\limits_0^3 (f(x)-g(x)) dx = 18 0∫3(f(x)−g(x)) dx=18 ?
Use properties of integrals: