Using substitution:
$$ u=1+x$$
$$ \frac{du}{dx}=1$$
Upper bound
$$ x=15,  u=1+15 = 16$$
Lower bound
$$ x=0,   u=1+0 = 1 $$
$$ \int \limits_0^{15} \dfrac{dx}{\sqrt{1+x}} = \int \limits_1^{16} \dfrac{du}{\sqrt{u}} $$
We can rewrite the expression to make it easier to integrate:
$$ \int \limits_1^{16} \dfrac{du}{\sqrt{u}} = \int \limits_1^{16} u^{-\frac{1}{2}} du $$
$$= \left[ 2u^{\frac{1}{2}} \right]_1^{16} = \Big[ 2\sqrt{u} \Big]_1^{16} $$
$$ =2(\sqrt{16}-\sqrt{1}) $$
$$ =2(4-1)$$
$$ =\boxed{6}$$