$$ f(x)=\begin{cases}
\frac{2x^2-3x-2}{2x+1} & \text{for } x \neq -\frac{1}{2} \\
\small k & \text{for } x = -\frac{1}{2}
\end{cases}
$$
Let \(f\) be the function defined above. For what value of \(k\) is \(f\) continuous at \(x=-\dfrac{1}{2}\) ?
The function \(f(x)=\dfrac{2x^2-3x-2}{2x+1}\) is undefined for \(x=-\dfrac{1}{2}\). It has a point discontinuity, but the limit can be found through factoring and cancelling out terms:
$$ f(x)=\frac{2x^2-3x-2}{2x+1} $$
$$ \lim_{x\to -\frac{1}{2}} \frac{2x^2-3x-2}{2x+1} $$
$$ =\lim_{x\to -\frac{1}{2}} \frac{(2x+1)(x-2)}{2x+1} $$
$$ =\lim_{x\to -\frac{1}{2}} x-2 $$
$$ = -\frac{1}{2}-2 $$
$$ = \boxed{-\frac{5}{2}} $$