$$ f(x)=\begin{cases} \frac{2x^2-3x-2}{2x+1} & \text{for } x \neq -\frac{1}{2} \\ \small k & \text{for } x = -\frac{1}{2} \end{cases} $$

Let \(f\) be the function defined above. For what value of \(k\) is \(f\) continuous at \(x=-\dfrac{1}{2}\) ?