Substituting the value x=0 results in the indeterminate form. We can use L'Hospital's rule.
x→0limxsin(2π+x)−1=x→0lim1cos(2π+x)
=cos2π=0
Comparing it with the limit definition of a derivative:
h→0limhf(x+h)−f(x)
h→0limhsin(2π+h)−sin(2π)
f(x)=sinxx=2π
f′(x)=cosx
f′(2π)=cos2π=0