\(\displaystyle\lim\limits_{x\to 0} \frac{\sin\left(\frac{\pi}{2}+x\right)-1}{x}= \)
Substituting the value \(x=0\) results in the indeterminate form. We can use L'Hospital's rule.
$$ \lim\limits_{x\to 0} \frac{\sin\left(\frac{\pi}{2}+x\right)-1}{x}= \lim\limits_{x\to 0} \frac{\cos(\frac{\pi}{2}+x)}{1}$$
$$ = \cos\frac{\pi}{2} = \boxed{0} $$
Comparing it with the limit definition of a derivative:
$$ \lim \limits_{h\to 0} \frac{f(x+h)-f(x)}{h} $$
$$ \lim \limits_{h\to 0} \frac{\sin(\frac{\pi}{2}+h)-\sin\left(\frac{\pi}{2}\right)}{h} $$
$$ f(x)=\sin x \hskip{2em} x=\frac{\pi}{2}$$
$$ f'(x)=\cos x $$
$$ f'\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2} = \boxed{0} $$