Substituting in the value \(x=a\) results in the indeterminate form \(\dfrac{0}{0}\).
We can factor using difference of squares and cancel terms:
$$ \lim\limits_{x\to a} \frac{x^2-a^2}{x^4-a^4} $$
$$ = \lim\limits_{x\to a} \frac{x^2-a^2}{(x^2+a^2)(x^2-a^2)} $$
$$ = \lim\limits_{x\to a} \frac{1}{x^2+a^2} $$
$$ =\boxed{\frac{1}{2a^2}} $$
Once you know L'Hospital's rule, you can use if for all indeterminate forms:
$$ \lim\limits_{x\to a} \frac{x^2-a^2}{x^4-a^4} $$
$$ = \lim\limits_{x\to a} \frac{2x}{4x^3} $$
$$ = \frac{2a}{4a^3} $$
$$ = \boxed{\frac{1}{2a^2}} $$