\( \lim \limits_{x \to 1} \dfrac{2\cdot \ln(x)}{e^x-1}\)
\(\dfrac{2}{e} \)
\(1 \)
\(0\)
nonexistent
Summary
Submit
Skip Question
Approach
$$ \lim \limits_{x \to 1} \frac{2\cdot \ln(x)}{e^x-1}$$ $$ = \frac{2\ln(1)}{e^1-1} $$ $$ = \frac{2(0)}{e-1} $$ $$ = \frac{0}{e-1} $$ $$ = \boxed{0} $$