We need to find the lower and upper limits of integration. Find the intersections of the two curves:
2x2=12−x2
3x2=12
x2=4
x=2,−2
The area under the curve is:
−2∫2(12−x2)−(2x2) dx=−2∫212−3x2 dx
=[12x−x3]−22
=(12(2)−(2)3)−(12(−2)−(−2)3)
(16)−(−16)=32