The graph of \(y=x^2\) has a positive value from \(x=1\) to \(x=3\) whereas the graph of \(y=-2x\) is always negative on the same interval.
The region bounded by the curves can be represented by:
$$ \int\limits_1^3 \colorbox{aqua}{$x^2$}-\colorbox{yellow}{$(-2x)$}   dx $$
$$ = \int\limits_1^3 x^2+2x   dx $$
$$ = \Big[\frac{1}{3}x^3+x^2+C \Big]_1^3 $$
$$ = \frac{1}{3}(3)^3+(3)^2-\left(\frac{1}{3}(1)^3+(1)^2\right) $$
$$ = 18-\frac{4}{3} $$
$$ = \boxed{\frac{50}{3}} $$