\(\displaystyle \int \frac{dx}{4+x^2}  dx \)
The derivative of arctan:
$$ \frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2} $$
Rewriting our integral:
$$ \int \frac{dx}{4+x^2} = \int \frac{dx}{4(1+\frac{x^2}{4})} $$
$$ = \frac{1}{4}\int \frac{dx}{1+\left(\frac{x}{2}\right)^2}  dx $$
Using substitution:
$$ u=\frac{x}{2} \hskip{2em} du =\frac{dx}{2} \hskip{2em} 2  du=dx$$
$$ \frac{1}{4}\int \frac{2   du}{1+u^2} =\frac{1}{2}\int \frac{du}{1+u^2}$$
$$ = \frac{1}{2}\tan^{-1}u + C$$
$$ = \boxed{\frac{1}{2}\tan^{-1}\left(\frac{x}{2}\right)+C} $$