For 0∘<a∘<90∘ and 0<b<1, when cosa∘=b, which of the following expressions is equivalent to cos(2a∘) ?
(Note: cos2θ=(cosθ)2−(sinθ)2)
Using the identity in the note:
cos(2a∘)=(cosa)2−(sina)2
We need to use the pythagorean identity, which is not given:
sin2x+cos2x=1
sin2x=1−cos2x
Substituting:
(cosa)2−(sina)2=cos2a−sin2a
=cos2a−(1−cos2a)
=2cos2a−1
We are given cosa∘=b
=2b2−1