In the standard \((x,y)\) coordinate plane, the graph of the equation \(y=3\sin{(2x+0.5\pi)}\) has what amplitude and period?
$$ \begin{array}{l c c}
& \underline{\text{amplitude}} & \underline{\text{period}} \\
\text{A.} & 3 & \pi \\
\text{B.} & 3 & 2\pi \\
\text{C.} & 3 & 4\pi \\
\text{D.} & 6 & \pi \\
\text{E.} & 6 & 2\pi \\ \end{array} $$
The standard equation for a trigonometric function is:
$$ y=A\sin{B(x-C)}+D $$
The amplitude is \(A\) and the period is related to \(B\) by:
$$ \text{Period} = \frac{2\pi}{B} $$
Rewriting the given equation:
$$ y=3\sin{(2x+0.5\pi)} $$
$$ y = 3\sin{2(x+0.25\pi)} $$
In this form we can see that the amplitude is 3 and the period is:
$$ \text{Period} = \frac{2\pi}{B} $$
$$ \text{Period} = \frac{2\pi}{2} $$
$$ \text{Period} =\pi $$